

Electronics 1 Lab (CME 2410)

School of Informatics & Computing German Jordanian University

Laboratory Experiment (3)

Prelab:

- 1. Simulate the procedure describe in Part I, Section 5d (Negative Polarized Clipper).
- 2. Prepare a short report with simulation results.

Part I - Diode Clipper

1. Objective:

To know the behavior of clipper circuit (simple and double)

2. Theory:

Clipper Circuit:

The clipper circuits have the properties of selecting a part of the applied waveform that can be higher or lower to a reference level or included between two reference levels.

Fig. 2.1: clipper

By assuming for the diode *D* the characteristic of an ideal diode and for the input voltage a positive value ($u_i > 0$), the diode is forward biased and, being ideal, the output voltage u_o is equal to zero.

When, instead, the input voltage has a negative value ($u_i < 0$), the diode *D* is reverse biased and it doesn't conduct: the output voltage u_o is equal to the input voltage u_i .

Fig. 2.2: The output (b) of a sinusoidal input voltage (a).

In practice the positive part of the signal over the zero limit has been "cut".

3. Equipment & Instruments

- Module No. : DL 3155E12
- Function Generator
- Oscilloscope

4. Components List:

R1 = 10 k Ω - 1/4W - 5%

- $R2 = 5 k\Omega$ manual regulation trimmer
- $R3 = 5 k\Omega$ manual regulation trimmer
- D1 = Silicon diode 1N4007
- D2 = Silicon diode 1N4007

<u>*Calculation data:*</u> Voltage drop at a forward biased silicon diode: $U_{threshold} \approx 0.6 V$

5. Procedure

• Insert the Module 12 in the console and set the main switch to ON;

a) **POSITIVE CLIPPER**

- 3. set the switches S1 to ON and S2 to OFF and turn, completely counterclockwise, the potentiometer R2;
- 4. connect the signal generator and the oscilloscope as shown in Fig. 2.3-a.;
- adjust the oscilloscope in the following way: CH1 and CH2 = 1 V/DIV, SWEEP = 1 ms/DIV, Coupling = DC;

- 6. without supplying the signal generator, superpose, at the half of the oscilloscope display, the line of channel 1 and the line of channel 2;
- 7. supply the signal generator and adjust the output to a sinusoidal voltage of $V_{pp} = 6$ V and f = 200 Hz;
- 8. observe the displayed output signal: the positive half-waves have been cut at a level that corresponds to the diode threshold (0.6V);
- 9. draw in Fig. 2.4-a the signals displayed on the oscilloscope.

b) <u>NEGATIVE CLIPPER</u>

- 1. set the switches S1 to OFF and S2 to ON and turn, completely counterclockwise, the potentiometer R3: the diode polarity used in the circuit is inverted;
- 2. connect the signal generator and the oscilloscope as shown in Fig. 2.3-b;
- 3. Draw in Fig. 2.4-b the output signal displayed on the oscilloscope: in this case all the negative half-waves have been removed;
- 4. compare the output wave of the negative clipper with the one of the positive clipper and describe the differences that have been found;

c) **POSITIVE POLARIZED CLIPPER**

- *1.* set the switches S1 and S2 on OFF
- 2. turn the potentiometer R2 in such a way to read, on the jack 3, a voltage of 1 V: use the oscilloscope to effectuate this reading;
- *3.* set the switch S1 to ON;
- 4. repeat the procedure of points with the red arrow;
- 5. observe the displayed output signal: the positive half-waves are cut, against the positive clipper, at a higher level that corresponds to the polarization direct voltage (1 V) added to the diode threshold voltage (0.6 V);
- 6. draw in Fig. 2.4-c the output signal displayed on the oscilloscope;

d) <u>NEGATIVE POLARIZED CLIPPER</u>

- *1.* set the switches S1 and S2 to OFF;
- 2. turn the potentiometer R2 in such a way to read, on the jack 4, a voltage of -1 V: use the oscilloscope to effectuate this reading;
- *3.* set the switch S2 to ON;
- 4. observe the displayed output signal to compare it to the one of the positive polarized clipper and describe the differences that have been found;
- 5. Draw in Fig. 2.4-d the output signal displayed on the oscilloscope.

e) INDEPENDENT LEVEL DOUBLE CLIPPER

- *1.* set the switches S1 and S2 to ON;
- 2. observe the displayed output signal, draw it in Fig. 2.4-e, describe the differences that have been found with the previous circuits;
- *3.* observe what happens for the different voltage values applied to the jacks 3 and 4, by adjusting the potentiometers R2 and R3.

Fig. 2.3

- a) positive clipper
- b) negative clipper
- c) positive polarized clipper
- d) negative polarized clipper
- e) independent level double clipper

6. Results

c)

d)

Fig. 2.4

•

a) positive clipper
b) negative clipper
c) positive polarized clipper
d) negative polarized clipper
e) independent level double clipper

7. Questions:

- A. The positive peak voltage of a positive clipper is:
 - 1- 0 V
 - 2- 0.6 V
 - 3- Equal to the input peak voltage
 - 4- 1.2 V
- B. Why is the positive peak voltage in the negative clipper not cut?
 - 1- The diode is forward biased
 - 2- The diode is reversed biased
- C. In a positive polarized clipper we found the voltage source in series to the diode equal to be +5V. Which is the cut level of the positive voltage?
 - 1- 0.6
 - 2- Equal to the input peak voltage
 - 3- 5 V
 - 4- 5.6 V

Part II - Clamper and Voltage Multiplier

1. Objective:

To be familiar with the clamper circuits, the voltage doubler and voltage multiplier.

2. Theory:

A) CLAMPING CIRCUITS

While the clipping circuit cuts a part of the input signal, the clamping circuit adds to the signal a positive or negative DC component due to a charged capacitor.

Consider for example the circuit of the Fig. 4.1 a (negative clamper).

Let's suppose that the generator delivers an alternating voltage $U_i(t)$ (s. Fig. 4.1 b) with the peak value of $U_{i \max} = 10$ V and that the diode V1 is ideal (no resistance for $U_F \ge 0$ V with the threshold voltage of $U_{th} = 0$ V).

Fig. 4.1 Negative Clamper

Switching on $U_i(t)$ the capacitor C1 is initially uncharged $(U_{C1} = 0 \text{ V})$. In the positive cycle the diode V1 conducts as points 1 as well as point 2 are positive to ground. As V1 shows (almost) no resistance the capacitor is charged instantaneously. The voltage U_{C1} equals the input voltage $U_i(t)$ until its maximum value $U_{C1} = U_{i \max} = +10 \text{ V}$.

For $T_4 \le t \le T_2$ the input voltage $U_i(t)$ decreases from the maximum value +10 V. Point 2 finds itself at a negative potential to ground as the diode V1 doesn't conduct in reversed biases mode and the capacitor cannot discharge. The voltage U_{c1} is still **clamped** to its maximum value $U_{c1} = U_{i \text{ max}} = +10 \text{ V}.$

Applying the KVL the output voltage $U_{o}(t)$ gets

$$U_o(t) - U_i(t) + U_{c1} = 0$$

$$\Rightarrow U_o(t) = U_i(t) - U_{c1}$$

As the capacitor C1 can't discharge anymore the voltage U_{c1} is constant at the value $U_{c1} = U_{i \max} = +10$ V and the output voltage $U_o(t)$ is simply the alternating input voltage $U_i(t)$ shifted to the negative polarity by $U_{i \max} = 10$ V (s. Fig. 4.1 c):

$$U_0(t) = U_i(t) - U_{C1}$$
$$= U_i(t) - U_{i \max}$$
$$= U_i(t) - 10 \text{ V}$$

In the circuit of Fig. 4.2 (positive clamper)

the direction of the diode V1 is **opposite** to Fig. 4.1. Here the negative cycle will charge the capacitor C1 to the negative value of the alternating voltage $U_{C1} = -U_{i \max} = -10$ V and this voltage is clamped to the input value. As all reference polarities are kept unchanged we can use the same equation as above:

$$U_{0}(t) = U_{i}(t) - U_{C1}$$

= $U_{i}(t) - U_{i \max}$
= $U_{i}(t) - (-10 \text{ V})$
= $U_{i}(t) + 10 \text{ V}$

Fig. 4.2 Positve Clamper

With a resistive load R1 in parallel to the diode, the capacitor aims to discharge through this load. If the discharge time is sufficiently long, the voltage at the capacitor U_{C1} is not able to vary appreciably: since the discharge time is of the order of R1 · C1 it is therefore necessary that R1 · C1 >> T, where T is the period of the alternated signal.

For example for a load equal to R1 = 1000 Ohm and for frequencies in the order of f = 50 Hz it is necessary a capacitor with a capacity of $C1 \ge 100 \mu$ F.

B) VOLTAGE DOUBLER

In the circuit of Fig. 4.3 (voltage doubler) the positive clamper is followed by a half-wave rectifier (see former experiment). Although the input to the rectifier is a pulsating and not an alternating voltage (see Fig. 4.3 c) the capacitor C2 will be charged to the maximum voltage $U_{C2} = 2 \cdot U_{i \text{ max}}$ (see Fig. 4.3 d). In absence of a load to the capacitor C2 the output voltage will keep constant at the double value of the input voltage:

 $U_o(t) = U_{C2} = 2 \cdot U_{i \max}$

Fig. 4.3 Voltage Doubler

To determine the maximum reverse voltage $U_{\rm RV1\,max}$ of the diodes (also named Peak Inverse Voltage PIV) the KVL should be applied.

C) VOLTAGE MULTIPLIER

To get a more general understanding of adding voltages with charged capacitors and diodes we make two minor changes to the circuit of Fig. 4.2 (see Fig. 4.4):

- To get positive numerals for the clamped voltages at all capacitors the reference polarity at capacitor C1 is turned (from right to left).
- As the order of elements in one branch is arbitrary we change the order of the diode V2 and the capacitor C2;

Fig. 4.4 Voltage Doubler

As discussed above the negative cycle of the input voltage $U_i(t)$ charges capacitor C1 via diode V1 and the positive cycle charges capacitor C2 via V2 while U_{C1} is constant at

$$\frac{U_{C1} = U_{i \max}}{C2 \text{ is charged to}}.$$

 $U_{C2} = U_i(t) + U_{C1}$ or using the clamped voltages: $\underline{U_{C2}} = U_{i \max} + U_{i \max} = \underline{2 \cdot U_{i \max}}$

We add another diode-capacitor section (see Fig. 4.5).

As discussed above the negative cycle of the input voltage $U_i(t)$ charges C1 via diode V1 and in addition C3 via V3. The voltage U_{C3} is easily identified by using KVL:

Fig. 4.5 Voltage Tripler

$$U_{C3} + U_{C1} + U_i(t) - U_{C2} = 0$$
$$U_{C3} = U_{C2} - U_{C1} - U_i(t)$$

Replaced by the clamped voltages $U_{C2} = 2 \cdot U_{i \max}$, $U_{C1} = U_{i \max}$ and $U_i(t) = -U_{i \max}$ $U_{C3} = 2 \cdot U_{i \max} - U_{i \max} - (-U_{i \max})$ $U_{C3} = 2 \cdot U_{i \max}$

A $3 \cdot U_{i \max}$ output is taken across C1 and C3 (see Fig. 4.5).

Adding more diode-capacitor section (see Fig. 4.6) we get a lattice network. Every new capacitor adds a voltage of $2 \cdot U_{i \max}$.

Fig. 4.6 Voltage Quadrupler

3. Questions:

- a. The diodes are never ideal. They always have a threshold voltage. Calculate the maximum output voltage of the Negative Clamper with a diode of $U_{th} = 0.6$ V.
- b. Calculate the output voltage of the voltage doubler with diodes of $U_{th} = 0.6$ V.
- c. Prove for the Voltage Quadrupler that the new diode-capacitor section adds a voltage of $U_{C4} = 2 \cdot U_{i \text{ max}}$.
- d. Calculate for the Voltage Tripler the maximum reverse voltages (or peak inverse voltages) of all diodes.
- e. Compared to normal transformer name at least one advantage and one disadvantage of a Voltage Multiplier.
- f. Give 3 concrete examples for the practical application of the voltage multiplier.

4. Equipment & Instruments:

- Module No. : DL 3155 M12
- Function Generator
- Oscilloscope
- $R1 = 10 \text{ k}\Omega (1/4 \text{ W} 5 \%)$

5. Procedure:

The negative and positive clamper

All measurements have to be made for the negative as well as for the positive clamper.

- 1. Use the module named above;
- 2. Identify how to realize the negative as well the positive clamper;
- 3. Connect the signal generator and the oscilloscope to your circuit.
- 4. Set the signal generator output to a sinusoidal voltage of about

$$U_{i \max} = 2 V$$

$$f = 1 \text{ kHz}$$

- 5. Sketch the input and output signals displayed.
- 6. Vary the peak voltage and the frequency of the input voltage, observe and describe what happens.

The voltage doubler

- 1. Identify how to realize the voltage doubler (see Fig. 4.3 a);
- 2. Connect the signal generator and the oscilloscope to your circuit.
- 3. Set the signal generator output to a sinusoidal voltage of about

$$U_{i \max} = 2 V$$

 $f = 1 \text{ kHz}$

- 4. Sketch the input and output signals displayed.
- 5. Vary the peak voltage and the frequency of the input voltage, observe and describe what happens.