

Electronics 1 Lab (CME 2410)

School of Informatics & Computing German Jordanian University

Laboratory Experiment (5)

The Bipolar Junction Transistor (BJT) Characteristics & DC Operation

1. Objective:

- 1. To be familiar with BJT transistors and to learn how they work.
- 2. To study the concept of biasing a Bipolar Junction Transistor (BJT).

2. Theory:

The transistor is a three-terminal device. The transistor consists of two n-type materials separated by a p-type material (npn transistor) or two p-type materials separated by an n-type material (pnp transistor). Figure 10.1 below shows a schematic representation of a transistor.

Fig. 10.1: The bipolar transistor

Because there are three terminals and the operations of the two p-n junctions are coupled, one single voltage-current characteristic (as was possible for the diode) is no longer valid for the BJT. Therefore, a set of curves is necessary.

<u>Input characteristics</u>: The input characteristic is a plot of the input base current I_B as a function of the controlling base-emitter voltage V_{BE} while the collector-emitter voltage V_{CE} is constant:

$$I_B = f(V_{BE}) \big|_{V_{CE} = const}$$

<u>Output characteristics</u>: a plot of the output collector current I_C versus the output collectoremitter voltage V_{CE} with the input base current I_B as a parameter:

$$I_C = f(V_{CE})|_{I_p = const}$$

Fig. 10.2: Input and output characteristic curves

The transistor has different modes of operation. Out of these modes is

(a) the ACTIVE mode where the transistor operates linearly over a specified range as a controlled current source. In this mode of operation, the output collector current I_C is approximately directly proportional to the base current I_B with the proportionality constant being the *DC*-current gain β_{DC} :

Our mission in this experiment is to carefully bias the BJT such that it is operating in the linear active mode. The chosen operating point depends on the bias voltage V_{BE} , the current gain β_{DC} , and the collector circuit resistance.

(b) A BJT can be made to act as a simple ON/OFF switch. In such an application, the transistor is operated in the <u>saturation region</u> to simulate the ON (closed) switch condition (with minmal voltage drop) and in the <u>cut-off region</u> to simulate the OFF (open) switch condition (with no current flowing). These conditions are dependent on the input applied to the base of the transistor. When the transistor switch is ON, $V_{CE} = V_{CE \text{ sat}}$ and when the transistor switch is OFF, $V_{CE} = V_{CC}$.

BJT Circuit Examples:

A BJT circuit is shown in Fig. 10.3. The operating point of the BJT is described by the two quantities $I_{\rm C}$ and $V_{\rm CE}$. We find them by analyzing the input loop (with R_B) and the output loop (with R_C).

Vcc source reverse bias the collector-base diode

V_B source forward bias the base-emitter diode with R_B as a current limiting resistor.

Fig. 10.3: Example of a BJT circuit

To find the collector current $I_{\rm C}$ we first have to calculate the base current $I_{\rm B}$. To find its value we apply KVL to the left loop:

Then, using the DC-current gain $\beta_{\rm DC}$ to calculate $I_{\rm C}$ with equation (1)

The collector-emitter voltage $V_{\rm CE}$ we get by applying KVL to the right loop:

3. Equipment & Instruments

Module No. : DL 3155E14 Multimeter

4. Components List:

 $R1 = 120 \text{ k}\Omega, R2 = 10 \text{ k}\Omega, R4 = 15 \text{ k}\Omega, R5 = 1 \text{ k}\Omega$

5. Procedure

1) \Rightarrow connect the circuit as shown in Fig. 10.4;

 V_{in} is the input voltage, V_{out} is the output voltage. Both are not used in this experiment.

Fig. 10.4: Common emitter circuit

2) \Rightarrow measure the voltages V_B, V_E and V_C, determine the emitter current $I_E = \frac{V_E}{R_5}$ by using the measured value of V_E;

create a table like Tab. 10.1 and put these value in; name these values of step (2) the "measured" values ;

- 3) → <u>calculate</u> the voltages V_B, V_E and V_C, considering the voltage V_{BE} = 0.6V; name other assumptions you used for the calculation; <u>calculate</u> the value of the emitter current I_E by using the calculated value of V_E; put them all as "calculated" values in a second row of Tab. 10.1;
- 4) \Rightarrow measure the voltages between the 3 terminals of the transistor and write these 3 values in a new Tab. 10.2;
- 5) \Rightarrow measure the voltage drops on R1 and R2 and write them in further columns of Tab. 10.2 ;
- 6) \Rightarrow <u>calculate</u> the base current I_B and the DC-current gain β_{DC} and write them in further columns of Tab. 10.2;
- 7) <a> <u>observe</u> and <u>comment</u> the carried out measures (transistor currents and bias voltage) and verify that the transistor works in the **active** zone.

Tab. 10.1	V _B /V	V _E /V	$V_{\rm C}/V$	$I_{\rm E}/{\rm m}$	$A = I_C / mA$		
						Measured Values	
						Calculated Values	
Tab. 10.2	V_{BE}/V	V _{BC} /V	V _{CE} /V	V_{R1} /V	V_{R2} /V	I _B /mA	$\beta_{DC} = I_C / I_B$
	Measured Values					Calculated Values	

Modification insertion

Modification M1

- 1) > remove the cover of the Modifications/Faults simulator and set the first dip-switch M1 to ON position (covered dot);
- 2) \Rightarrow measure and record in Tab. 10.3 the collector, base and emitter voltages with reference to ground;

3) **determine if the transistor T1 works:**

- a. at the saturation point
- b. in the active region
- c. at the cut-off point
- 4) \Rightarrow set the dip-switch M1 back to the initial upwards position;

Modification M2

- 5) set the dip-switch M2 to ON position (covered dot);
- 6) be measure and record in Tab. 10.3 the collector, base and emitter voltages with reference to ground;

7) **determine if the transistor T1 works**:

- a. at the saturation point
- b. at the cut-off point
- c. in the active region
- d. at an optimum collector voltage (Vc)
- 8) set the dip-switch M2 back to the initial upwards position;

Modification M3

- 9) \Rightarrow set the dip-switch M3 to ON position (covered dot);
- 10) measure and record in Tab. 10.3 the collector, base and emitter voltages with reference to ground;

11) **determine if the transistor T1 works**:

- a. at the cut-off point
- b. at the saturation point
- c. in the active region
- 12) set the dip-switch M3 back to the initial upwards position;

		V_C / V	V _B /V	$\mathbf{V_E}$ / \mathbf{V}
Tab. 10.3	Modification M1			
	Modification M2			
	Modification M3			