Lab. 5: BJT

Part 1 :- Simulate the following circuit and fill the table below (you have to add screen shot of your simulator result): -
$\mathrm{R} 1=120 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega, \mathrm{R} 4=15 \mathrm{k} \Omega, \mathrm{R} 5=1 \mathrm{k} \Omega$ use BJT 2N2222, consider $\beta=75$

$\mathrm{V}_{\text {in }}$ is the input voltage,
$\mathrm{V}_{\text {out }}$ is the output voltage.
Both are not used in this experiment.

$\mathrm{V}_{\mathrm{B}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{E}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{C}} / \mathrm{V}$	I_{E}	I_{C}	I_{B}	
						Simulation result
						Calculation

Measure:-

$\mathrm{V}_{\mathrm{BE}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{BC}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{CE}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{R} 1}$	$\mathrm{~V}_{\mathrm{R} 2}$

The transistor work :-
a) In active region
b) At saturation point
c) At cut-off point

If $\mathrm{VBE}=\mathrm{VB}-\mathrm{VE}>0.6$ then the junction is For.
$\mathrm{VBE}=\mathrm{VB}-\mathrm{VE}<0.6$ then the junction is REV.
If $\mathrm{VBC}=\mathrm{VB}-\mathrm{VC}>0.6$ the junction is For.
If $\mathrm{VBC}=\mathrm{VB}-\mathrm{VC}<0.6$ the junction is REV.
Why ???

Part 2:-

1- Change R1 from 120k to 10k then measure

$\boldsymbol{V}_{\boldsymbol{B}}$	$\boldsymbol{V}_{\boldsymbol{C}}$	$\boldsymbol{V}_{\boldsymbol{E}}$

The transistor work :-
a) In active region
b) At saturation point
c) At cut-off point

Why ???

2- Change R4 from 15k to 2.7k then measure

$\boldsymbol{V}_{\boldsymbol{B}}$	$\boldsymbol{V}_{\boldsymbol{C}}$	$\boldsymbol{V}_{\boldsymbol{E}}$

The transistor work :-
d) In active region
e) At saturation point
f) At cut-off point

Why ???

3- Change R2 from 10k to 3.3k then measure

$\boldsymbol{V}_{\boldsymbol{B}}$	$\boldsymbol{V}_{\boldsymbol{C}}$	$\boldsymbol{V}_{\boldsymbol{E}}$

The transistor work :-
g) In active region
h) At saturation point
i) At cut-off point

Why ???
IE=IB+IC................... kcl

BE junction	BC junction	Mode of operation
F	R	F.Active (linear transistor used as amplifier
R	F	R.Active biasing some digital circuit
F	F	Saturation (s.w on) VEC $<=$ VCE sat $=0.2$
R	R	Cut-off (s.w off)

Saturation :-

```
VEC <= VCE sat =0.2
```

Active region:- linear (region)
$\mathrm{IC}=\beta \mathrm{IB}$
$\beta=D C$ current gain
cut-off :-

$$
\mathrm{IC}=\mathrm{IE}=\mathrm{IB}=0
$$

$$
\begin{aligned}
& \mathrm{RB}=\mathrm{Rth}=\mathrm{R} 1 / / \mathrm{R} 2=(\mathrm{R} 1 * \mathrm{R} 2) /(\mathrm{R} 1+\mathrm{R} 2) \\
& \mathrm{VB}=\mathrm{Vth}=(\mathrm{Vcc} * \mathrm{R} 2) /(\mathrm{R} 1+\mathrm{R} 2)
\end{aligned}
$$

$\mathrm{VBE}=\mathrm{VB}-\mathrm{VE}$

