Lab. 5: BJT



## Part 1 :- Simulate the following circuit and fill the table below (you have to add screen shot of your simulator result ): -

 $R1{=}\;120k\Omega,\,R2{=}\;10k\Omega,R4{=}\;15k\Omega\,,\,R5{=}\;1k\Omega\,$  use BJT 2N2222 , consider  $\beta{=}75$ 



V<sub>in</sub> is the input voltage, V<sub>out</sub> is the output voltage. Both are not used in this experiment.

| V <sub>B</sub> /V | $V_E/V$ | V <sub>c</sub> /V | I <sub>E</sub> | l <sub>c</sub> | I <sub>B</sub> |             |
|-------------------|---------|-------------------|----------------|----------------|----------------|-------------|
|                   |         |                   |                |                |                | Simulation  |
|                   |         |                   |                |                |                | result      |
|                   |         |                   |                |                |                | Calculation |

### Measure:-

| V <sub>BE</sub> /V | V <sub>BC</sub> /V | V <sub>CE</sub> /V | V <sub>R1</sub> | V <sub>R2</sub> |
|--------------------|--------------------|--------------------|-----------------|-----------------|
|                    |                    |                    |                 |                 |

The transistor work :-

- a) In active region
- b) At saturation point
- c) At cut-off point

If VBE =VB-VE >0.6 then the junction is For.

VBE =VB-VE <0.6 then the junction is REV.

If VBC = VB-VC > 0.6 the junction is For.

If VBC = VB-VC < 0.6 the junction is REV.

Why ???

### Part 2:-

## 1- Change R1 from 120k to 10k then measure

| V <sub>B</sub> | V <sub>c</sub> | V <sub>E</sub> |
|----------------|----------------|----------------|
|                |                |                |

The transistor work :-

- a) In active region
- b) At saturation point
- c) At cut-off point

Why ???

2- Change R4 from 15k to 2.7k then measure

| V <sub>B</sub> | V <sub>c</sub> | V <sub>E</sub> |
|----------------|----------------|----------------|
|                |                |                |

The transistor work :-

- d) In active region
- e) At saturation point
- f) At cut-off point

Why ???

# 3- Change R2 from 10k to 3.3k then measure

| V <sub>B</sub> | V <sub>c</sub> | V <sub>E</sub> |
|----------------|----------------|----------------|
|                |                |                |

The transistor work :-

g) In active region

h) At saturation point

i) At cut-off point

Why ???

IE=IB+IC..... kcl

| BE junction | BC junction | Mode of operation    |
|-------------|-------------|----------------------|
| F           | R           | F.Active (linear     |
|             |             | transistor used as   |
|             |             | amplifier            |
| R           | F           | R.Active biasing     |
|             |             | some digital circuit |
| F           | F           | Saturation (s.w on)  |
|             |             | VEC <= VCE sat =0.2  |
| R           | R           | Cut-off (s.w off)    |

Saturation :-

VEC <= VCE sat =0.2

Active region:- linear (region )

Ic=β IB

 $\beta$  = DC current gain

cut-off :-

IC=IE=IB=0

RB=Rth=R1//R2 = (R1\*R2)/(R1+R2)

VB=Vth = (Vcc \*R2)/(R1+R2)



### VBE= VB-VE